Science at the Hart School ## Yr 12 AQA Physics Curriculum overview <u>Curriculum intent:</u> Science encompasses everything that we are and allows us to make sense of the world around us. Science at The Hart School is more than just a core subject. We believe an outstanding science education should develop studies to question the world in which we live, enable critical-thinking and encourage students to become socially aware global citizens. Our Science faculty has planned an inspiring, inclusive, and diverse curriculum that is designed to engage and enthuse students with the real-life applications of the subject whilst promoting ambition and aspirations for their future. In an ever-changing world, in which STEAM subjects are at the forefront of advancements for the future, we want to prepare our students for this by not only looking at the knowledge of the subject, but also the methods, processing skills and applications associated with it. This ensures that our students are scientifically literate, able to evaluate what they see in the news and the world around them and make informed decisions that will affect their future lives and the planet. | | Autumn 1 | | | Autumn 2 | | | | Spring 1 | | | Spring 2 | | | Summer 1 | | Summer 2 | | | |--|---|--|--|--|--|---|---|--|--|---------------|--------------------------------------|---|-------------------------------|---|--|--|-----------------------------|------------------------| | Core Course Topic:
These topics are
taught in small
bitesize chunks and | Chapter 14.
Practical work in
Physics | Chapter 15.
Practical
assessment | Chapter 16:
Mathematical
skills | | Matter and | Chapter 2:
Quarks and
leptons | Chapter 3:
Quantum
phenomena | Chapter 6:
Forces in
equilibrium | Chapter 7: On
the move | Newton's laws | Chapter 9:
Forces and
momentum | Chapter 10:
Work, energy
and power | Chapter 11:
Materials | Chapter 12:
Electric current | Chapter 13: DC circuits | Chapter 4: Waves | Chapter 5: Optics | | | | Section 5: revision resources Content in this section is a continuing study for a student of physics. A working knowledge of the specified fundamental (base) units of | | | | This section introduc | ectromagnetic radiatio | ne fundamental properties
n and quantum | Section 3: revision resources Vectors and their treatment are introduced followed by development of the student's knowledge and understanding of forces, energy and momentum. The section continues with a study of materials considered in terms of their bulk prope | | | | | their bulk propertie | ties study of these phenomena from GCSE. It | | Section 2: revision resources GCSE studies of wave phenomena are extended through a development of knowledge of the | | (2 napars) | | specific knowledge
your child will learn
in detail | | nt. The ability to carry th | neasurement errors and of rough reasonable | 1 1 T | new interest and kno
study of these topics
develop and evolve i
most up-to-date spe
importance of intern | owledge dimension be
s, students become aw
in physics. They will ap
cification, resources, s | preciate the 12 Visit for the
upport and administration
n the development of new | starting point for s | h. As with earlier topi
tudents who prefer to | | | ction Electricity would | provide a good | practical skills at an ea | orly stage in the course
ork for later study of the | include refraction, diffract
interference. | onary waves. Topics treated | and to love manch name | | detail | Section 5: Use of SI units and their prefixes Limitations of physical measurements Estimation of physical quantities Data handling Trigonometry Algebra Graphs, gradients and areas | | | Use of a Geiger counter to detect radiation
Record the precision of a microammeter
Use of standard form
Use of linear graphs to find the gradient and intercept | | | Section 3: Use of a micrometer to find the diameter of a wire Use of vernier calipers to measure the diameter of a cylinder Use of pulleys and pivots to test equilibrium Use of light gates and a data logger to measure velocity Identify uncertainties in measurements Use fractions and percentages | | | | | Section 4: Use of digital meters measurements Use electrical equipi Use of current and v Use of appropriate u | ment safely
oltage sensors | Section 2: Quote phase differences Use of an oscilloscope Use of lasers to investigate refraction | | | | | | Home learning online platform | Grapho, gradiente di | ia arous | | | | | | | Seneca A | AQA Physi | CS | | | | | | | |