C1 Knowledge Organiser – 4.1.1 - Atomic structure

The atom <u>1</u>	Elements223Mass numberNaP = 11E = 11E = 11N = 12N = 12Mass number – Protons + neutronsProtons + neutronsAtomic number – Protons and electrons always balance – no overall charge	Sub-atomic particles3ParticleSymbolChargeRelative MassElectrone*1-0Protonp*1+1Neutronn01	 Properties of metals <u>4</u> High melting point Shiny Malleable Hard (high density) Conduct electricity Conduct heat NON-METALS ARE THE OPPOSITE
Relative Atomic Mass 5• RAM = The average value for the mass of an element• Takes into account the abundance of the isotopes of each element $A_r = \frac{(mass 1 \times abundance 1) + (mass 2 \times abundance 2)}{100}$	Electron configurations • First shell = 2 • Second shell = 8 max • Third shell = 8 max • Calcium = 2. 8. 8. 2 Group number of electrons on outer shell	Development of the atom Plum pudding – P – ball of positive charge E – Randomly scattered N – No neutrons N – No nucleus Nuclear Model – P – In the nucleus E – Orbit in shells N – In the nucleus N – Has a nucleus	ball of positive charge
Scattered Particles Most particles the sp Beam of Thin gold Foil Minu Wi	e atom is empty ace eflected - ass in the ucleus hich is ositive Actual Result	 Separating mixtures. Filtration – insoluble solid liquid. Crystallisation – evapora water forms crystalline so on boiling point. Chromatography – pigmedia 	ate blid. sed

C1 Knowledge Organiser – 4.1.2 – The Periodic table The Periodic table Modern periodic table 2 Group 0 <u>3</u> • Arranged in order of +1• Noble gases atomic number +3 4 -3 -2 -1 Charge on ions • Unreactive / inert +2 н • Group – Column of • Stable arrangement of metal ы Be Ne elements that have similar Right and metalloid electrons non-metal chemical properties Mg Na Si s CI Ar AI • Full outer shell • Group number = number • Used in light bulbs - will Ga Kr ĸ Ca Sc Cr Mn Fe Co Ni Cu Zn Ge As Se Br of electrons in the outer not reactive with the shell Rb Sr Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Xe -metal filament • **Period** – Row in the Cs Ba La Hf Pt Au Hg Ti Pb w Re Os lr. Bi Po At Rn Та Boiling point increases periodic table down the group Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Period = Number of shells <u>5</u> <u>6</u> Group 1 Group 7 Development of the periodic table Alkali metals, Halogens Early Periodic Table arranged by • 1 electron in outer shell 7 electrons in outer shell atomic weight More reactive as you • their molecules each • Newland - Law of Octaves - every go down the group contain two atoms 8th element placed in the same More shielding, easier (they are diatomic) group - had metals and on-metals to lose outer electron Less reactive as you go together react with water, down the group • Mendeleev - Left gaps for • More shielding, harder producing hydroxides undiscovered elements and hydrogen gas to gain an electron 9 **Metals** <u>8</u> Properties of transition metals (TRIPLE ONLY) free electrons from outer Good conductors High melting point shells of metal atoms High melting points Shiny High densities Malleable • Very malleable and ductile Hard (high density) Hard, strong ٠ Coloured compounds Conduct electricity Used as catalysts Iron III ag Cobalt II ag Copper II : Conduct heat • Used for wires – conduct, ductile Used for pipes – Do not react with water