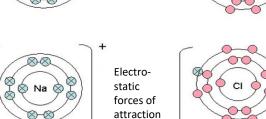
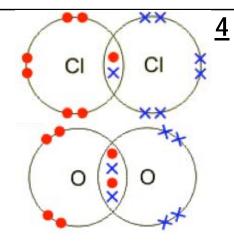

C2 Knowledge Organiser – 4.2.1 – Bonding and properties


Polymers

- Covalent bonding
- Monomer Single unit
- Polymer lots of monomers joined together

Ionic bonding

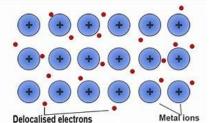
- Metal and nonmetal
- · Transfer of electrons
- Metal → Loses electrons forms positive ion
- Non-metal → Gains electrons forms negative ion
- Electrostatic forces of attraction


revisionworld ::

Ionic compounds

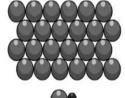
- Ionic lattice
- Strong electrostatic forces of attraction between oppositely charged ions
- High melting point
- Lots of energy to break bonds
- Conducts when molten or dissolved
- lons free to move

Covalent structures


- 2 non-metals
- Share electrons
- Venn diagram dot and cross in the overlap
- One shared pair = single bond
- Two shared pairs = Double bond
- Number of dots/crosses must add up to the group number

Covalent compounds

- Simple molecule
- Weak intermolecular forces of attraction between molecules
- Low boiling point
- Little energy required to break
- Doesn't conduct electricity
- No free electrons


Metallic bonding

- Delocalised electrons
- Free to carry a charge
- Conducts thermal energy transferred by free electrons

Alloys

- Pure metal
- layers
- slide

- Alloys 2 metals
- Layers distorted
- Can't slide

- Tiny particles (1-100nm).
- Able to penetrate biological tissues.
- High surface area to volume ration so are good <u>catalysts</u>.
- Concern about safety because not much is known about effects on body.

Diamond	Graphite	Graphene	Fullerene
4 strong covalent bonds	3 strong covalent bonds	One layer of graphite	Hexagonal ring of carbon atoms
High melting point – lots of energy to break	Lubricant – Layers of atoms slide over each other	3 strong covalent bonds	Buckminster- fullerene (C ₆₀)
Very hard - Used for drill bits	Delocalised electron – carries a charge	Delocalised electron – carries a charge	Carbon nanotubes - cylindrical
Does not conduct electricity	Conducts electricity	Conducts electricity	Used for nanotechnology