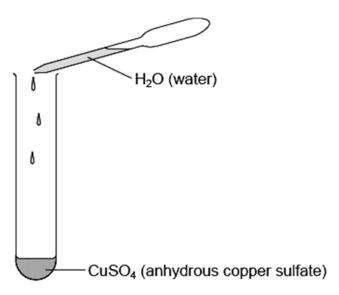


Veek 5 Learning Check Chemistry Foundation		Name: Class: Date:	
Time:	30 minutes		
Marks:	30 marks		
Comments:			

Q1.


Chromatography was carried out on a sample of soft drinks to check that they contained only colours that were safe. This is the result.

What conclusions about the safety of the colours in the soft drinks **A**, **B**, **C** and **D** can be made from the results shown by chromatography?

(Total 2 marks)

Q2. The diagram shows how anhydrous copper sulfate can be used to test for water.

(a)	What colour change will yo	ou see when water is added to the C	CuSO₄?	
	Colour changes from	to		(1)
(b)	Draw a ring around the me	eaning of the symbol ⇌		
	endothermic	exothermic	reversible	
				(1) (Total 2 marks)
Q3. A sto	udent heated some blue cop	oper sulphate crystals. The crystals t	turned into white coppe	er sulphate.
(a)		had to be heated to change it into we have exothermic or endothermic.		
	Explain your answer.			
(b)	The word equation for this hydrated copper sulphate [+ h	reaction is shown below. anhydrous copper sulphate (white)	+ water	(1)
	(i) What does the symb	ool === tell you about this reaction	on?	
	(ii) How could the stude	nt turn the white powder back to blu		(1)

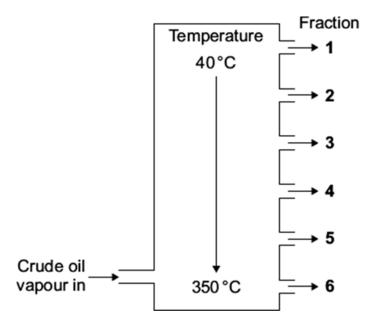
(Total 3 marks)

Q4.

Good quality water is needed for a healthy life.

In the United Kingdom, obtaining safe water for drinking is as simple as turning on a tap. The water is made safe to drink by water companies.

However, in many parts of Africa and Asia, water used for drinking is contaminated and untreated. It is estimated that 2.2 million people die each year as a result of drinking contaminated water.



DADA DANESHANANDA, Man with filtered water from the Mafi-Zongo water project. www.amurt.net/africa/ghana/2005

(a) Sea water is not used as drinking water.	
Suggest why.	
	(1)
(b) Explain why water for drinking is filtered and then treated with chlorine.	
	_
	<u> </u>
	(2) (Total 3 marks)

Q5.

Crude oil is a mixture of hydrocarbons. Crude oil can be separated into fractions.

(a) (i) Complete the sentence.

The process used to separate the crude oil into fractions is called fractional _____ .

(ii) Why do the fractions separate at different temperatures?

(b) Tick (\checkmark) two properties of fraction 6.

Property	Tick (√)
contains hydrocarbons	
has a small number of carbon atoms in each molecule	
is easy to ignite	
has a high boiling point	

(2)

(1)

(1)

(c)	Fraction 1 contains h The general formula o					
	What is the formula o	f the alkane that has	s 5 carbon atoms in	each molecule?		
	Draw a ring around th	e correct answer.				
	C₅H ₉	C₅H₁₀	C₅H₁₁	C₅H ₁₂		
					(Total 5 m	(1) arks)
Q6. Lar	ge hydrocarbon molecu	ıles can be cracked	to produce smaller,	more useful molecu	ıles.	
Alka	nes and alkenes are pr	oduced when hydro	carbons are cracked	i.		
(a)	Give two conditions u	sed for cracking.				
	1					
	2				(2)	
(b)	Butane (C ₄ H ₁₀) is an a	ılkane.				
	The figure below show	ws part of the displa	yed structural formu	la of butane.		
	Complete the display	ed structural formula	a of butane in the fig	ure.		
		н—	H H 			
						(1)
(c)	Butane burns in oxyge	en.				
	Complete the word ed	quation for the comp	olete combustion of b	outane.		
	butane + oxygen → _		+		(2)	
(d)	Ethene is an alkene.					
	Give a test for alkene	S.				
	Give the result of the	test if an alkene is p	present.			
	Test					
	Result					
						(2)

) Each year many tonnes			
It took millions of years	for the crude oil to be forme	ed.	
	opment that meets the needs ources for future generations		rithout
Tick (✓) one box.			
Finite development			
Global development			
Natural development			
Sustainable developm	nent		
			(Total 8
day.	th's early atmosphere was p son of the atmospheres of th		
day.	son of the atmospheres of th		
day. he table shows a comparis	son of the atmospheres of th	e Earth and Venus today.	
day. he table shows a comparis Name of gas	on of the atmospheres of the	e Earth and Venus today. sition of atmosphere	
day.	Percentage compo	e Earth and Venus today. sition of atmosphere Venus today	
he table shows a comparis Name of gas Nitrogen	Percentage compo Earth today 78	e Earth and Venus today. sition of atmosphere Venus today 3.5	
he table shows a comparis Name of gas Nitrogen Oxygen Argon	Percentage compo Earth today 78	e Earth and Venus today. sition of atmosphere Venus today 3.5 a trace	
he table shows a comparis Name of gas Nitrogen Oxygen Argon Carbon dioxide	Percentage compo Earth today 78 21 0.97	e Earth and Venus today. sition of atmosphere Venus today 3.5 a trace a trace	
he table shows a comparis Name of gas Nitrogen Oxygen Argon Carbon dioxide Average surface temperature	Percentage compo Earth today 78 21 0.97 0.03	e Earth and Venus today. sition of atmosphere Venus today 3.5 a trace a trace 96.5	
Name of gas Nitrogen Oxygen Argon Carbon dioxide Average surface temperature Use the names of gase	Percentage compo Earth today 78 21 0.97 0.03	sition of atmosphere Venus today 3.5 a trace a trace 96.5 460 °C	
Name of gas Nitrogen Oxygen Argon Carbon dioxide Average surface temperature Use the names of gase (i) In the Earth's atn	Percentage composition Earth today 78 21 0.97 0.03	e Earth and Venus today. sition of atmosphere Venus today 3.5 a trace a trace 96.5 460 °C the sentences.	

(i)	Scientists do not know the accurate composition of the Earth's early atmosp Suggest why.	here.
		_
(ii)	Use information from the table to answer this question.	
	Water vapour is present in the atmospheres of the Earth and Venus today. The Earth's surface is mainly covered by water.	
	Suggest why there is no water on the surface of Venus.	_
		_
The	diagram shows how carbon dioxide is removed from the Earth's atmosphere.	
Cart	Oxygen	
/	dioxide	
	Coal	
	LimestoneOo	
	Oil	
	cribe what happened to the carbon dioxide in the Earth's early atmosphere. the diagram to help you.	
		_
		_
		_
		_
		_

Mark schemes

Q1				
	drink	s / colours E	B and C are safe	1
	drink	s / colours A	A and D are not safe accept a <u>pair</u> of one safe colour and one not safe colour identified for 1 mark accept A, B, C and D all contain one safe colour for 1 mark ignore references to shading	1 [2]
Q2	,			
~ -	(a)	white to bl	ue accept colourless to blue	1
	(b)	reversible		1 [2
Q3				
	(a)	endotherm	nic and because it takes in heat / energy both for one mark	1
	(b)	(i) reve	ersible reaction (or explanation)	1
		(ii) add v	water do not accept cooling or reverse the reaction	1 [3
Q4				
	(a)	contains (I	arge amounts of) dissolved solids / difficult to remove dissolved s allow salty / too much salt allow sea water makes you thirsty / vomit	solids
			allow polluted / untreated / contaminated	1
	(b)	filtered: re	moves solids / removes insoluble material / dirt ignore large objects	1
		chlorine: k	kills/destroy bacteria/microbes/ germs etc allow disinfect / sterilise or gets rid of bacteria ignore purify / clean	

[3]

Q5.

(a) (i) distillation

1

(ii) condense (at different temperatures)

accept they / fractions / hydrocarbons have different boiling points

ignore melting point / size of molecule

1

(b) contains hydrocarbons

1

has a high boiling point

.

1

(c) C₅H₁₂

[5]

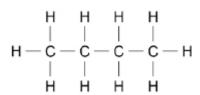
Q6.

(a) any two from:

high temperature

ignore heat / hot

allow a temperature between 400 °C and 900 °C


catalyst

allow aluminium oxide, alumina, porous pot, zeolites

- steam
- high pressure
- low oxygen atmosphere

2

(b)

all bonds and atoms must be present

1

(c) carbon dioxide

allow CO2

1

water

			_
~ 1	low	—	1
AI.	II IVV		

				1	
(d)	bron	nine (water)			
		do not accept bromide		1	
	turns	s (from orange / brown / yellow to) colourless MP2 is dependent on MP1 allow decolourises			
		ignore clear		1	
(e)	susta	ainable development		1	[8]
Q7.					
(a)	(i)	nitrogen / N ₂	1		
	(ii)	carbon dioxide / CO ₂	1		
(b)	(i)	humans / scientists had not evolved accept it was billions / millions of years ago allow too long ago	1		
	(ii)	temperature is above 100°C or any water would evaporate / boil accept Venus is too hot	1		
(c)	any	three from:			
	•	used by <u>plants</u>			
	•	used for <u>photosynthesis</u> accept <u>plants take in carbon dioxide and give out oxygen</u> for the first two bullet points ie 2 marks			
	•	dissolves in oceans / seas allow absorbs into oceans / seas			
	•	used to form the shells / skeletons of marine organisms			
	•	locked up as limestone / carbonates			
	•	locked up as fossil fuels / oil / coal	3		[7]

Examiner reports

Q1.

Too many candidates failed to understand what the chromatogram indicated and thought that safe colours were either the ones that had the greatest depth of colour or those which reached the greatest height. Candidates often incorrectly stated that all colours from the soft drinks were safe. Only a small number were able to link the colours from the soft drinks with the safe colours shown.

Q2.

This question was designed to give candidates a gentle start to the paper and the vast majority of the candidates were able to attempt the question and to gain marks.

- (a) Tested the ability of the candidates to interpret information given in a simple equation. Most candidates gave the correct response, although a number reversed the colours and gave, from blue to white. A few candidates gave vague responses such as clear or transparent instead of white. Examiners have noted for a number of years that students do not appreciate the difference in meaning of the terms clear and colourless.
- (b) The vast majority of candidates identified that the symbol means reversible. The most common incorrect response was exothermic.

Q3.

Foundation Tier

- (a) Candidates found this section difficult. Many gave exothermic and those who gave endothermic often found difficulty in explaining their answer.
- (b) (i) Most candidates answered this part correctly.
 - (ii) This part was poorly answered with many candidates choosing to continue heating rather than to add water.

Ω4.

The majority of the candidates were able to gain full marks.

Quite a few candidates were unable to gain the filter mark for part (b) as they were talking in terms of filtering large objects. Some even thought that it removes the salt. There were some candidates who gave the correct answers but did not mention which answer referred to which process.

Q5.

- (a) (i) Most candidates gained the mark. The word 'distillation' presented many candidates with a spelling problem.
 - (ii) The word 'condense' was not well known, so most candidates who gained the mark here did so for mentioning that the fractions have different boiling points. Many candidates stated incorrectly that the fractions 'have different melting points', 'have different reactivities', 'burn at different temperatures', or 'heat at

different rates'.

- (b) A few candidates ticked only one property. Generally this part was well answered. Almost half of the candidates correctly ticked both 'contains hydrocarbons' and 'has a high boiling point'. The majority of candidates gained at least one mark.
- (c) A slight majority of candidates were able to use the general formula C_nH_{2n+2} to identify that the correct formula of the alkane with five carbon atoms is C_5H_{12} .

Q6.

- (a) Conditions for cracking were not well known, with only around 5% of students gaining both marks, usually for stating 'high temperature' and 'catalyst'. Nearly 63% of students were unable to give any required conditions. Responses commonly included descriptions of the purpose of cracking or the outcome of cracking.
 - Responses which were insufficient for credit included 'heat', 'temperature', and 'pressure'.
- (b) The displayed structural formula for butane was clearly drawn by about 40% of students. However, 25% of students gave no response. The most commonly seen incorrect response was the formula for ethane, shown by adding just 'H' to the partial formula given. A very small minority of students attempted to complete the formula by adding 'H' within the carbon chain.
- (c) About 11% of students gained both marks by giving carbon dioxide and water. Butane oxide was commonly seen, often paired with hydrogen. Carbon and hydrogen was another incorrect combination. A small number of students wrote formulae. When correct, these were credited. Students giving either carbon dioxide or water gained one mark, with numbers approximately equally split between these two alternatives.
- (d) The test for alkenes using bromine water is not well known, with just around 5% of students awarded both marks and 8% at least one mark. It is apparent that students are not remembering this simple test. Students appeared to confuse 'alkene' with 'alkali', as the most frequently seen incorrect tests involved testing for pH (e.g. universal indicator or litmus). Testing with limewater or a lighted or glowing splint was also seen. A very small minority of students knew the use of bromine water to test for alkenes, but were unable to give the correct colour change.
- (e) 'Sustainable development' was correctly identified by half of students.

Q7.

- (a) (i) A large number of candidates used the information provided to correctly identify nitrogen as the main gas in the Earth's atmosphere.
 - (ii) The majority of candidates realised from the data that carbon dioxide used to be the main gas in the Earth's atmosphere.
- (b) (i) Most responses were incorrect because they were based on the idea that there was a lack of valid evidence which was caused by inadequate technology or the composition of the atmosphere changing.
 - (ii) Many candidates recognised that liquid water would not exist on the surface of Venus because it was too hot or any liquid water would boil/evaporate. Simply to state that the temperature on Venus is 460°C is an incomplete explanation

and did not receive credit.

(c) The diagram was given to cue candidates into how carbon dioxide was removed from the Earth's early atmosphere. Many candidates gained two marks for stating that trees absorb carbon dioxide and give out oxygen. Several of these candidates also appreciated that carbon dioxide was dissolved into the oceans. There was evidence that the majority of candidates do not understand that a large proportion of this carbon dioxide gradually became locked up in sedimentary rocks as carbonates and fossil fuels.