C10 Knowledge Organiser – 4.10.1 – Using resources

Earth's resources

- Natural resources provide shelter, food, clothing
- Finite resources are processes to provide energy and materials
- Finite resources Only a certain amount. Will run out
- Renewable resources More can be made. Will not run out

Waste water treatment 4

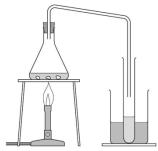
- Sewage waste water require removal of organic matter and microbes.
- Treatment includes:
- · Screening and grit removal
- Sedimentation to produce sludge and effluent
- Anaerobic digestion of sewage sludge
- Aerobic biological treatment of effluent

Reducing use of resources

Glass - Can be re-used. Can also be crushed and melted to make new glass products

Metals - Can be recycled by re-melting and recasting into a new product

Re-melting and sorting materials requires energy which releases Carbon dioxide into the atmosphere


Potable water

- Water that is safe to drink
- Potable water is not pure water as it contains dissolved salts and other substances
- Ground water is collected and passed through a filter bed to remove solid substances then sterilised to kill bacteria
- Salt water is desalinated by distillation or by reverse osmosis

Alternative methods of extracting metals (HT)

- Copper resources are running out. Low-grade ores are now being used to extract copper
- Phytomining Uses plants to absorb copper compounds.
 Plants are then harvested and burned to produce ash that contains copper
- Bioleaching Uses bacteria to break down copper compounds
- Displacement React copper compounds with a more reactive metal

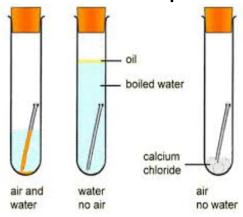
Analysis and purification of water samples (RP)

- Test pH by adding a few drops of Universal indicator and record colour
- 2. Collect dissolved solids by heating sample on a watch glass over a beaker of water until all water is evaporated. Weigh the watch glass to record the mass of dissolved solids
- **3. Desalination of sea water**. Use the set up in the diagram to heat the sample and collect the pure water sample in the test tube surrounded by an ice bath

Life Cycle Assessment (LCA)

Life cycle assessments (LCAs) are carried out to assess the environmental impact of products in each of these stages:

- extracting and processing raw materials
- manufacturing and packaging
- use and operation during its lifetime
- disposal at the end of its useful life, including transport and distribution at each stage.


Material	Advantages	Disadvantages	
Paper bag	 Can be made from recycled paper If sent to landfill they biodegrade quicker 	 Requires deforestation Requires more energy to make bags from trees than recycled paper Short life span 	
Plastic bag	 Can be re-used Stronger than paper bags so have a longer life span 	 Uses non-renewable resources for production Most waste goes to landfill 	

Remember to use numerical values from the data given to you in the question to make comparisons, e.g. Plastic produces 2.3 times more carbon dioxide during manufacture than paper bags

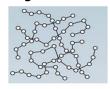
5

C10 Knowledge Organiser – 4.10.1 – Using resources (Chemistry only)

Corrosion and it's prevention

- Rusting is an example of corrosion.
- Both air and water are necessary for iron to rust
- Corrosion can be prevented by applying a coating that acts as a barrier, such as greasing, painting or electroplating.

·O	Alloy	Composition	Notes <u>2</u>
	Bronze	Copper, tin	Used for statues
	Brass	Copper, zinc	Used for coins
	Gold	Silver, copper, gold	Proportion of gold relates to carats. 24 carats = 100% gold, 18 carats = 75% gold
	Steel	Iron, carbon	High carbon steel is strong but brittle Low carbon steel is soft and easily shaped Stainless steel is resistant to corrosion (cutlery)


Ceramics

- · Soda-lime glass is made by heating a mixture of sand, sodium carbonate and limestone.
- Borosilicate glass, made from sand and boron trioxide, melts at higher temperatures
- · Clay ceramics are made by shaping wet clay and then heating in a furnace.

Composites

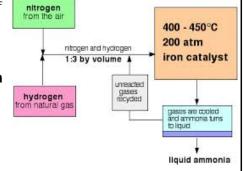
Most composites are made of two materials, a matrix or binder surrounding and binding together fibres or fragments of the other material, which is called the reinforcement.

Polymers

Thermosoftening

Thermosetting

The properties of polymers depend on their monomers and the conditions.


- E.g. low density (LD) and high density (HD) poly(ethene) are produced from ethene at different temperatures with different catalysts
- Thermosoftening polymers melt when they are heated.
- Thermosetting polymers do not melt when they are heated because they have cross links holding the polymer chains together, which require more energy to break

Haber process

- Used to manufacture ammonia
- The reaction is reversible so some of the ammonia produced breaks down into nitrogen and hydrogen:
- nitrogen + hydrogen ← ammonia
- On cooling, the ammonia liquefies and is removed. The remaining hydrogen and nitrogen are recycled.
- Conditions are a compromise to maintain a high yield but low energy costs at equilibrium

Production of NPK fertilisers

- Compounds of nitrogen, phosphorus and potassium are used as fertilisers to improve agricultural productivity.
- NPK fertilisers contain compounds of all three elements.
- Industrial production of NPK fertilisers can be achieved using a variety of raw materials in several integrated processes.
- NPK fertilisers are formulations of various salts containing appropriate percentages of the elements.
- Ammonia can be used to manufacture ammonium salts and nitric acid.
- Potassium chloride, potassium sulphate and phosphate rock are obtained by mining, but phosphate rock cannot be used directly as a fertiliser.
- Phosphate rock is treated with nitric acid or sulfuric acid to produce soluble salts that can be used as fertilisers

