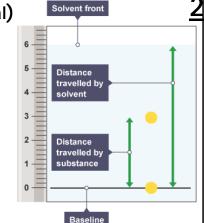
C8 Knowledge Organiser – 4.8.1 – Chemical Analysis


Pure substances

- Single element or compound, not mixed with any other substance
- Pure substances melt or boil at specific temperatures
- E.g. pure water will boil at 100°C
- Salt water will boil above 100°C as it contains an impurity

Chromatography (Required practical)

- Chromatography is used to separate mixtures based on their solubility
- Stationary phase = filter paper
- Mobile phase = Solvent (e.g. water)
- Rf is the ratio of how far the dissolved substance has travelled
- Rf value must be less than 1

distance moved by substance R_{f} distance moved by solvent

Chromatography basics

- Baseline must be drawn in pencil - ink will run
- Solvent line must be below the baseline - or it will dissolve the solute (pigments)
- Used for identifying unknown substances against known samples
- Rf values compared same Rf value means it is the same substance

Formulations

- A formulation is a mixture that has been designed for a particular use
- Each chemical in a formulation is measured carefully
- The incorrect amount of each component means that the formulation will not work

Test Gas

Hydrogen	Squeaky pop – Burning spill held at the open end of test tube

- Glowing spill inserted into Oxygen test tube - spill re-lights
- Carbon Limewater – Turns from dioxide colourless to cloudy. Precipitate of calcium hydroxide forms

Chlorine	Damp litmus paper is
	bleached and turns white

Flame tests (Chem Only)

- Lithium ion Crimson flame
- Sodium ion Yellow flame
- Potassium ion Lilac flame
- Calcium ion Orange red flame
- Copper ion Green flame
- If there is a mixture of ions the flame colour could be masked

Identifying metal ions using Sodium hydroxide (Chem only)

bealanning arealast (enem ening	
Metal ion	Result with NaOH (aq)
Aluminium	White precipitate – dissolves in excess
Calcium	White precipitate
Magnesium	White precipitate
Copper (II)	Blue precipitate
Iron (II)	Green precipitate
Iron (III)	Brown precipitate

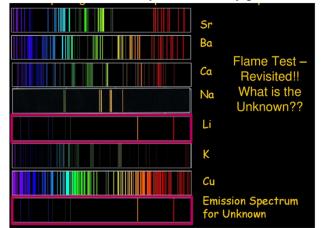
Non-Metal Positive test for ion ion Carbonate Reacts with dilute acid to

(CO ₃ ²⁻)	form carbon dioxide, which is then identified using limewater
Halide (Cl-, Br-, I-)	React with silver nitrate solution and nitric acid. Silver chloride is white, Silver bromide is cream and silver iodide is yellow

HCI

Produces white precipitate

with barium chloride and


Sulphate

 (SO_4^{2-})

Instrumental methods (Chem only)

- Instrumental methods = machines
- Elements and compounds can be detected and identified using instrumental methods
- Instrumental methods are better than lab methods as they are fast, sensitive and accurate

Flame Emission Spectroscopy (Chem only)

Used to analyse and identify metal ions in solution

The sample is put into a flame and light is given out and is passed through a spectroscope.

The output line spectrum can be analysed against knowns to identify ions and measure their concentrations

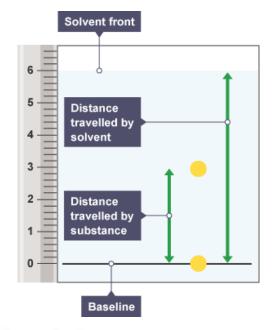
C8 Knowledge Organiser - 4.8.1 - Chemical Analysis - COMBINED

4

Pure substances

- Single element or compound, not mixed with any other substance
- Pure substances melt or boil at specific temperatures
- E.g. pure water will boil at 100°C
- Salt water will boil above 100°C as it contains an impurity

Formulations


- A formulation is a mixture that has been designed for a particular use
- Each chemical in a formulation is measured carefully
- The incorrect amount of each component means that the formulation will not work

Chromatography

- Baseline must be drawn in pencil ink will run
- Solvent line must be below the baseline or it will dissolve the solute (pigments)
- Used for identifying unknown substances against known samples
- Rf values compared same Rf value means it is the same substance

Chromatography (Required practical)

- Chromatography is used to separate mixtures based on their solubility
- Stationary phase = filter paper
- Mobile phase = Solvent (e.g. water)
- Rf is the ratio of how far the dissolved substance has travelled
- Rf value must be less than 1

R_{f}	_	distance moved by substance
n_f	=	distance moved by solvent

Gas	Test
Hydrogen	Squeaky pop – Burning spill held at the open end of test tube
Oxygen	Glowing spill inserted into test tube – spill re-lights
Carbon dioxide	Limewater – Turns from colourless to cloudy. Precipitate of calcium hydroxide forms
Chlorine	Damp litmus paper is bleached and turns white

<u>5</u>