Conservation of Mass

No atoms are lost or made during a chemical reaction: Mass of the products equals the mass of the reactants.

Mass changes when a reactant or product is a gas:

Mass appears to increase during a reaction	One of the reactants is a gas	Magnesium + oxygen \rightarrow magnesium oxide
Mass appears to decrease during a reaction	One of the products is a gas and has escaped	Calcium carbonate \rightarrow carbon dioxide + calcium oxide

The sum of the relative atomic $\mathbf{2 M g + \mathbf { O 2 } \rightarrow \mathbf { 2 M g O }}$ masses of the atoms in the $\quad \mathbf{4 8 g}+\mathbf{3 2 g}=\mathbf{8 0} \mathbf{g}$ numbers shown in the formula $\mathbf{8 0 g}=\mathbf{8 0 g}$

Balancing symbol equations:

 Represent chemic al reactions and have the same number of atoms of each element on both sides of the equation

4 Amounts of substanc es5 in equations HT^{2}
Chemical reactions show the number of moles reacting and the number of moles made. e.g.
$\mathbf{M g}+\mathbf{2 H C l} \rightarrow \mathbf{M g C l}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}}$
One mole of magnesium reacts with two moles of hydrochloric acid to make one mole of magnesium chloride and one mole of hydrogen

Uncertainty

Whenever a measurement is taken, there is always some uncertainty about the result obtained.
1.Calculate the mean
2. Calculate the range of the results 3. Estimate of uncertainty in mean would be half the range.
Does the mean value fall within the range of unc ertainty of the result?

Calculating amounts of substances in equations HT $\mathbf{6}$

If you have a 60 g of Mg , what mass of HCl do you need to convert it to MgCl_{2} ?
$A_{\mathrm{r}}: M g=24$ so mass of 1 mole of $\mathrm{Mg}=$ 24 g
$\mathrm{M}_{\mathrm{r}}: \mathrm{HCl}(1+35.5)$ so mass of 1 mole of $\mathrm{HCl}=36.5 \mathrm{~g}$

So 60 g of Mg is $60 / 24=2.5$ moles
Balanced symbol equation tells us that for every one mole of Mg . you need two moles of HCl to react with it.

So you need $2.5 \times 2=5$ moles of HCl
You will need $5 \times 36.5 \mathrm{~g}$ of $\mathrm{HCl}=182.5 \mathrm{~g} \mid$

Limiting Reactants HT] Concentration HT

In a reaction with 2 reactants, it is common to use an excess of one reactant to make sure that all of the other reactant is used up. This reactant that is
completely used up is called the limiting reactant, as it limits the amount of the products that can be made.
You can calc ulate the moles or mass of the products formed.

- The concentration of a solution (aq) can be measured in $\mathbf{g} / \mathbf{d m}^{\mathbf{3}}$ (mass/volume)
Concentration $=$ mass \div volume
- The concentration of the solution depends on the mass of the solute and the volume of the solvent Increasing mass increases concentration, increasing volume decreases concentration.

Using Moles to balance equations HT

Remember: moles $=$ mass $\div \mathbf{M}_{\mathbf{r}}$

- If you calculate the number of moles of each reactant and product in a reaction it will give you the ratio of reactants and products, so you can write the balanced equation.
e.g 48 g of Mg reacts with 32 g of O_{2} to produce 80 g of MgO
so: $48 \div 24=\mathbf{2 m o l}$ of $\mathbf{M g} ; 32 \div(2 \times 16)=\mathbf{1 m o l}$ of $\mathbf{O}_{\mathbf{2}} ; 80 \div(24+16)=$ $\mathbf{2 m o l}$ of MgO
this is a ratio of 2:1:2 $\left(\mathrm{Mg}: \mathrm{O}_{2}: \mathrm{MgO}\right)$:
$\mathbf{2 M g}+\mathrm{O}_{2} \longrightarrow \mathbf{2} \mathrm{MgO}$ (Balanced)

