P7 knowledge Organiser – 4.7.1 - Magnetism						
Poles of a Magnet The poles of a magnet are the places where the magnetic forces are strongest. When two magnets are brought close together they exert a force on each other. Two like poles repel each other. Two unlike poles attract each other. Attraction and repulsion between two magnetic poles are examples of non- contact force.	Permanent MagnetsApermanentproducesitsownmagnetic field.Like poles repelOpposite poles attract	Induced Magnets An induced magnet is a material that becomes a magnet when it is placed in a magnetic field. Induced magnetism always causes a force of attraction. When removed	Electromagnetism When a current flows through a conducting wire a magnetic field is produced around the wire. The strength of the magnetic field depends on the current through the wire and the distance from the wire. Shaping a wire to form a solenoid increases the strength of the magnetic field created by a current through the wire. The magnetic field inside			
Motors A coil of wire carrying a current in a magnetic field tend of an electric motor. The size of the force can be increas or using a stronger magnet. The size of the force depen wire and the magnetic field. The force is greatest when the magnetic field and zero when the wire is parallel.	ds to rotate. This is the basis sed by increasing the current ds on the angle between the the wire is perpendicular to	from the magnetic field an induced magnet loses most/all of its magnetism quickly.	a solenoid is strong and uniform. The magnetic field around a solenoid has a similar shape to that of a bar magnet. Adding an iron core increases the strength of the magnetic field of a solenoid. An electromagnet is a solenoid with an iron core.			
Magnetic Fields The region around a magnet where a force acts on another magnet or on a magnetic material (iron, steel, cobalt and nickel) is called the magnetic field. The force between a magnet and a magnetic material is always one of attraction. The strength of the magnetic field depends on the distance from the magnet. The field is strongest at the poles of the magnet. The direction of the magnetic field at any point is given by the direction of the force that would act on another north pole placed at that point. The direction of a magnetic field line is from the north (seeking) pole of a magnet to the south(seeking) pole of the magnet.	Plotting a Magnetic Field Mark a dot near the north place the tail of the compass mark a second dot at the tip with the tail of the next com you reach the south pole. Rep N	pole of a bar magnet and ineedle above the dot and of the needle. Repeat this pass over the new dot until beat this with further lines.	Solenoids A solenoid is a long coil of insulating wire and they are used in lots of electrical devices where a strong magnetic field is needed. When a current is passed through the wire the magnetic field increases in strength if the current is increased and reverses in direction if the current is reversed.			
Flemin thuMb When	gs Left Hand Rule (HT) a conductor carrying a current	Magnetic Flux Density For a conductor at right	Quantity	Symbol	Unit	
Movement is plac Forefinger magnet	Flemings Left Hand Rule (HT) Magnetic Flux Density Quantity Symbol Unit When a conductor carrying a current is placed in a magnetic field the magnet producing the field and the conductor evert a force on each Magnetic Flux Density For a conductor at right angles to a magnetic field and carrying a Quantity Symbol Unit					
Field (N to S) conduct other. T seCond finger You nee	tor exert a force on each This is called the motor effect . ed to be d be able to show that	current: Force = Magnetic Flux	Magnetic Flux Density	В	Т	
Current (+ to -) Fleming the rel	g's left-hand rule represents ative orientation of the force,	Density x Current x Length	Current	I	А	
the cur magnet	rent in the conductor and the tic field.		Length	1	m	

P7 Knowledge Organiser – 4.7.1 - Magnetism

Jses of the Generator Effect Physics HT only)Loudspeakers (Physics HT only)How Transformers W only)The generator effect is used n an alternator to generateLoudspeakers headphones use the motorHow Transformers W only)		HTHow Transformers Work (Physics HT only)QuantityandTwo coils of insulated wire are wound around an iron core. The primary coil isQuantity	Symbol	Unit
ac and in a dynamo to generate dc.	effect to con variations in current electrical circuits to pressure variations sound waves.	vert connected to ac and when the current in passes through the primary coil potential the difference is induced in the secondary in coil. Primary Coil Transformer Core Secondary Coil	V _p	V
If transformers were 100% efficient the electrical power output would equal the electrical power input. This is represented by the equation: $V \times I = V \times I$		wer s is Vp Np Ns Vs Across Secondary Coil	V _s	V
Induced Potential (Physics HT only)TransforIf an electrical conductor moves relative to a magnetic field or if there is a change in the magnetic field around a conductor, a potential difference is induced across the ends of the conductors. If the conductor is part of a complete circuit a current is induced in the conductor. This is called the generator effect.Transfor A basic and a se used as to of these potential the num either of		nsformers (Physics HT only) asic transformed is made up of a primary coil a secondary coil wound on an iron core. Iron is d as the core as it is easily magnetised. For each these coils they have a number of turns and a	N _p	
		ential different across the coil. You can calculate number of turns or potential difference for per of these coils using the equation: of Turns	Ns	
An induced current generates a magnetic field that opposes the original change, either the movement of the conductor o the change in magnetic field. The size of an induced potential current/potential difference is affected by the strength of a magnetic field, the speed at which the conductor crosses through the lines of the magnetic field. In a second primary voltage of the p		Detential DifferenceNumber of Turnscross Primary Coil	I _p	A
		a step up transformed the voltage of the ondary coil is greater than the voltage of the nary coil while in a step down transformed the tage of the secondary coil is less than the voltage he primary coil.	I _s	A