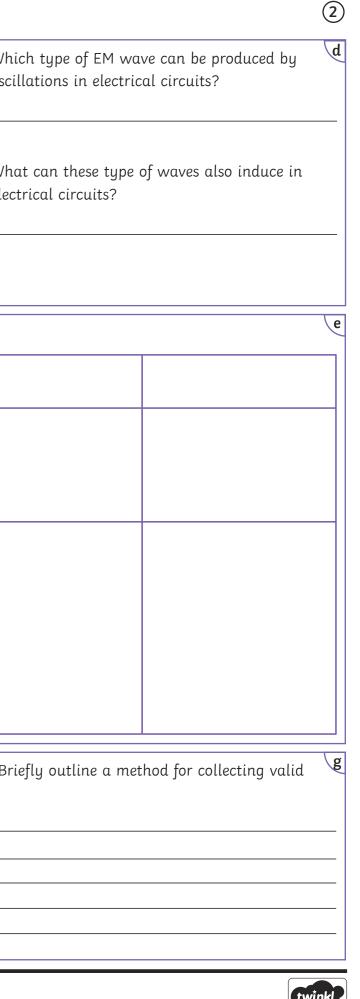
AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Higher

AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Hig	ner				(1)
All waves transfer from one place frequency:			n the following equation l = 1/frequency e units for	in the f	Identifying the suitability of apparatus to measure wave speed, frequency, and wavelength was a required practical.
The particles oscillate () around a fixed point and pass onto the next particle and, in turn, they oscillate too.	amplitude:)?		State a control variable in this practical:
State the two types of wave.	wavelength:		symbol equation linking ency and wavelength?	y wave	Why was it important to control this variable?
2			te the rest of the table:		What was the biggest source of error in your practical?
Which type of wave oscillates perpendicular (at right angles) to the direction of energy transfer?		Symbol in the Equation	What It Represents	Units	
Which tune of wave oscillates parallel to the		v			How could you overcome this error?
Which type of wave oscillates parallel to the direction of energy transfer?			frequency		
Which letter on the graph represents	d			m	
amplitude? wavelength?	B		e speed of a wave with o of 42cm and a frequency		A wave has a frequency of 54Hz and a speed of 330m/s. Calculate the wavelength.
crest? A	¢				

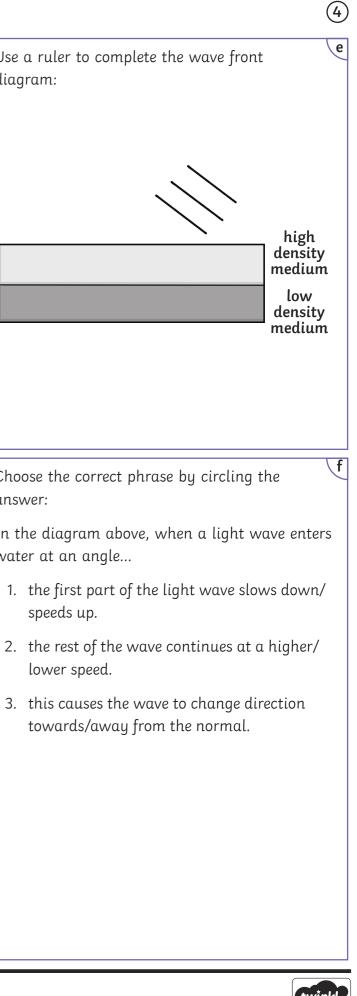

Which type of wave are electromagnetic	Complete the gap fill:	Which type of EM wave has the	W
(EM) waves?	Electromagnetic waves transfer	longest wavelength?	OS
	from the source of the waves to an	highest frequency?	-
Which part of the EM spectrum can human	The waves form a continuous	shortest wavelength?	W
eyes detect?	and all types travel at	lowest frequency?	ele
	the same through a vacuum	most energy?	_
	(space) or air.	least energy?	

Complete the boxes to show the order of the electromagnetic (EM) spectrum and state at least two uses of each type of EM wave.

EM Wave:			
Uses:			
Explanation:			

State four factors that are affected by different f substances interacting with different EM waves:	The amount of absorption or radiation of infrared radiation by different surfaces was a required practical. Bri results for this experiment.
1	
2	
3	
4	

a	d	Connect has a see back lived a new profession
State three types of EM waves that can have a hazardous effect: 义	State two factors that affect the amount of harm caused by certain EM waves:	Suggest why nurses wear lead-lined aprons when performing x-ray examinations.
	2	
B		
	Evaluate the use of gamma rays in detecting and treating cancer (4 marks).	
Vrite the EM wave from the previous question next to the lescription of the damage it does:		
Causes skin to age prematurely and increases the risk of skin cancer.		
Causes ionisation inside of cells, this damage leads to the cells dying.	Evaluate the use of x-rays in medical imaging (4 marks).	State two other precautions that nurses and healthcare professionals can undertake to reduce the harm of x-rays.
		1
complete the gap fill:		
adiation dose is a measure of the risk of resulting		2
om exposure of the body to the		2
is measured in sieverts, and 1 sievert (Sv) is equivalent to		
millisieverts (mSv).		
ome types of radiation are more hazardous than others due to		
he amount of in the wave and how penetrating t is.		
		tw



AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Higher

Complete the gap fill:	Use a ruler to draw the path of the light ray		Us
The of a wave depends on the	as it travels through the glass block.	from air with a low refractive index, into glass with a higher refractive index (see data in	di
material () it is travelling		table below). Therefore upon entering the glass,	
through. If a wave changes from one medium to		the speed slows down and the ray is refracted	
another, the changes too.		towards the normal. What happens as the light leaves the glass block and travels into the air?	
Waves are only refracted when they meet the		You must refer to the 'normal' in your answer.	
boundary between two media at an			
The more the speed changes between the two			
media, the greater the direction of the wave			
changes.			
However, a wave that meets the boundary			
at (perpendicular) will not be			
			Cł
Light waves travel in air than in			ar
glass. The change in speed and thus direction			In
between these two media can be shown using a			W
diagram.			
The refractive index of a medium is the extent to w	hich the light is refracted when it enters the medium	. Look at the table of data:	2
I REITALLIVE	s can be drawn from the data?		
Medium Index			

air 1 glass 1.5		Index
glass 1.5		
	air	1
water 1.3	glass	1.5
	water	1.3
diamond 2.4	diamond	2.4

Complete the gap fill:	Define:		You are giver	n the following equation	in the f	Ide
All waves transfer energy from one place to	frequency:		exam: period	. = 1/frequency		me
another, but the matter does not move. The	The number of waves passing a point	'	What are the	e units for		wa
particles oscillate (vibrate) around a fixed point	each second.	period (time)? seconds (s)				Sta
and pass energy onto the next particle and, in	amplitude:		frequency? h	ertz (Hz)		The
turn, they oscillate too.	The maximum displacement of a point on a wave away from its undisturbed position.					 Wh
State the two types of wave					g g	
State the two types of wave.	wavelength: The distance from a point on one wave to the			symbol equation linking ency and wavelength?	wave 2	wa
1. transverse	equivalent point on the adjacent wave.		v = fλ			 Wh
2. longitudinal			V - 1 X			pra
			Now comple	te the rest of the table:		Cοι
Which type of wave oscillates perpendicular			Symbol in the	What It Represents	Units	
(at right angles) to the direction of energy transfer?			Equation			Ho∖ Use
transverse			v	wave speed	m/s	
Which type of wave oscillates parallel to the						
direction of energy transfer?			f	frequency	Hz	
longitudinal						
			λ	wavelength	m	
Which letter on the graph represents	(d	ιĽ				
amplitude? C			Calculate the	e speed of a wave with a	h	Av
wavelength? B	В	'	wavelength (of 42cm and a frequency	of 11Hz.	of 3
crest? A		,	$v = f\lambda$			Rec
A / V	$ \langle \rangle \rangle = \int_{-\infty}^{\infty} dx dx dx dx$		convert cm i	nto m = 0.42m		the
trough? D			substitute n	umbers into equation:		 Suł
		.	11Hz × 0.42n	n = 4.62m/s		330

entifying the suitability of apparatus to asure wave speed, frequency, and wavelength s a required practical.

(1)

ite a control variable in this practical: e volume of water in the tank.

ny was it important to control this variable? e depth of the water will affect the speed and evelength.

nat was the biggest source of error in your actical?

unting the waves by eye.

w could you overcome this error? e a stroboscope.

vave has a frequency of 54Hz and a speed 330m/s. Calculate the wavelength.

arrange the equation to make wavelength e subject: $\lambda = \frac{V}{f}$

ostitute numbers into the equation: Dm/s ÷ 54Hz = 6.1 metres

\i

Which type of wave are electromagnetic	Complete the gap fill:	Which type of EM wave has the	Wł
(EM) waves?	Electromagnetic waves transfer energy from the	longest wavelength? radio waves	oso
transverse	source of the waves to an absorber . The waves	highest frequency? gamma rays	rad
Which part of the EM spectrum can human eyes detect? visible light only	form a continuous spectrum and all types travel at the same velocity through a vacuum (space) or air.	shortest wavelength? gamma rays lowest frequency? radio waves most energy? gamma rays least energy? radio waves	Wl ele os

Complete the k	e omplete the boxes to show the order of the electromagnetic (EM) spectrum and state at least two uses of each type of EM wave.								
EM Wave:	radio waves	microwaves	infrared waves	visible light	ultraviolet waves	x-rays	gamma rays		
Uses:	Television, radio and Bluetooth.	Satellite communication and cooking food.	Remote controls, infrared cameras and heaters.	Optical fibres and photography (cameras).	Security marking, energy efficient lamps and sunbeds.	Medical imaging and medical treatment for cancer.	Medical treatments for cancer and sterilising food.		
Explanation:	The waves have low energy and so are not harmful for transmitting information over long distances.	The water in the food absorbs the microwaves and heats up the food. Microwaves also travel in straight lines so are useful in communication.	Very hot objects might glow, like the wires in a toaster and transfer the heat energy to the food.	The light wave is reflected inside of the fibre without being lost and so can carry data over large distances.	Not visible to the human eye on banknotes and other documents, so can help to identify counterfeit or stolen goods.	X-rays penetrate skin and soft tissue, but not through bones so an image can be formed.	Highest frequency of all EM waves so will pass through plastic wrapping and metal to kill bacteria. Will also 'kill' cancer cells.		

State four factors that are affected by different f substances interacting with different EM waves:	The amount of absorption or radiation of infrared radiation by different surfaces was a required practical. Brie results for this experiment.
1. absorption	1. Cover four boiling tubes in different materials to create different surfaces; matt black, shiny black, white a
2. reflection	Pour the same volume of the same start temperature of hot water into the tubes (these control variables ensued of each tube every minute (the dependent variable). 4. The tube that cools the fastest emits infrared energy t
3. refraction	
4. transmitted	

/hich type of EM wave can be produced by scillations in electrical circuits?

2

/d

ıdio waves

/hat can these type of waves also induce in ectrical circuits?

scillations

iefly outline a method for collecting valid

e and silver (the independent variable). 2. Isure validity). 3. Measure the temperature I the fastest.

\g

State three types of EM waves that of 1. ultraviolet waves 2. x-rays 3. gamma rays Write the EM wave from the previou		State two factors that affect the amount of hard certain EM waves: 1. type of radiation 2. amount of exposure Evaluate the use of gamma rays in detecting and cancer (4 marks). Statements should be of a comparative nature. be used to detect cancer by ingesting or injection source as a tracer. This is beneficial so early the commence and the outcome is therefore more laboration.	nd treating . Gamma rays can ing a radioactive reatment can	Suggest why nurses x-ray examinations. Nurses wear lead-line exposed to harmful x spectrum, and also of highly ionising and mutations and poter (a tumour). Therefor wearing a lead-lined
Write the EM wave from the previous question next to the description of the damage it does:		in terms of life-expectancy. However, the energ gamma rays is the highest in the EM spectrum short half lives must be used. Gamma rays car	a, so sources with	
ultraviolet waves	Causes skin to age prematurely and increases the risk of skin cancer. Causes ionisation inside of	cancer without invasive surgery and a high for the cancer cells to mutate further, resulting in However, normal cells nearby are also affected ionisation resulting in the patient feeling unwo		
x-rays and gamma rays	cells, this damage leads to the cells dying.	Evaluate the use of x-rays in medical imaging (X-rays can be used to detect broken	(4 marks). f	State two other prece professionals can un 1. Work from a dis glass window.
Complete the gap fill: Radiation dose is a measure of the risk of harm resulting from exposure of the body to the radiation . It is measured in sieverts, and 1 sievert (Sv) is equivalent to 1000 millisieverts (mSv). Some types of radiation are more hazardous than others due to the amount of energy in the wave and how penetrating it is.		bones, visualise dental issues, treat cancer cells and as part of CT scans. However, x-rays can cause ionisation in cells and increase the chance of mutation therefore leading to rapidly growing and dividing cells (a tumour).		2. Wear a radiatio record exposure

wear lead-lined aprons when performing

3

g

h

ned aprons due to two factors: they are x-rays towards the upper end of the EM on a regular basis. The x-rays themselves are can cause damage to the cell, resulting in entially leading to uncontrolled cell growth ore, nurses can reduce their radiation dose by d apron.

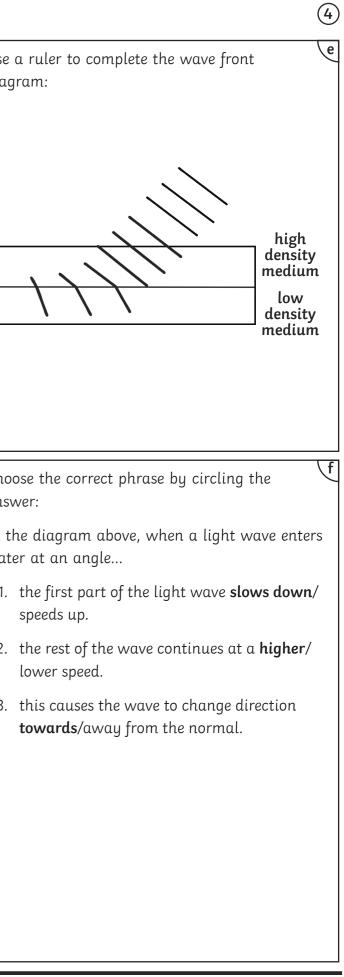
cautions that nurses and healthcare idertake to reduce the harm of x-rays.

stance/step into another room/stand behind a

on badge/dosimeter to measure and

AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Higher Answers

Complete the gap fill:			Use a ruler to draw the path of the light ray		Use
The speed of a wave depends on the material			as it travels through the glass block.	from air with a low refractive index, into glass with a higher refractive index (see data in	dia
(medium) it is t	ravelling throug	h. If a wave		table below). Therefore upon entering the glass,	
changes from one medium to another, the speed				the speed slows down and the ray is refracted	
changes too.				towards the normal. What happens as the light leaves the glass block and travels into the air?	
Waves are only	refracted when t	they meet the		You must refer to the 'normal' in your answer.	
boundary between two media at an angle .				The light travels from a high refractive index	
The more the sn	and changes bet	ween the two		(glass) to a lower refractive index (air), so the	
The more the speed changes between the two media, the greater the direction of the wave				light bends away from the normal.	
changes.					
Ū					
		boundary at 90°			
(perpendicular)	will not be refra	icted.			
Light waves trav	vel faster in air t	than in glass.			Cho
The change in s	peed and thus d	irection between	i		ans
these two media	ı can be shown ı	using a ray			In t
diagram.					wat
					1.
The refractive in	idex of a mediun	n is the extent to w	hich the light is refracted when it enters the med	dium. Look at the table of data:	2.
	Refractive	What conclusions	s can be drawn from the data?		
Medium	Index				3.
		Air is a gas and has the lowest refractive index. Then the refractive index increases in liquids (water) and increases			
air 1 further in solids		further in solids	(glass and diamond).		
glass	1.5				
		1			



water

diamond

1.3

2.4

