AQA Physics Combined Science Unit 5: Forces Higher

Explain the difference between a vector and a scalar quantity.

Place a tick in the correct column to show whether the following are vector or scalar quantities.

Quantity	Vector	Scalar
Force		
Speed		
Distance		
Velocity		
Displacement		

Forces can be contact or non-contact. Provide two examples for
each one.
Contact:
Non-contact:

Explain the difference between mass and weight.
Mass: \qquad
Weight: \qquad
Unit of mass: \qquad
Unit of weight: \qquad
Name the apparatus used to determine an objects weight.

State the equation that can be used to determine the weight of d an object.

Calculate the weight of an object on the moon if its mass is 3 kg . The gravitational field strength on the moon is $1.6 \mathrm{~N} / \mathrm{kg}$.
\square

Explain the effect on an object's weight if its mass was doubled.

Calculate the resultant forces acting on the van below.

Horizontal force: \qquad
Vertical force: \qquad
On a force diagram, what two things do the arrows show?

Complete the sentences below.

Elastic deformation occurs when a force has been applied to a spring and it \qquad to its original shape. \qquad occurs when the spring does not return to its original shape.

Students placed masses, one at a time, on a spring and measured its extension. They collected the following results.

Force (N)	0	1	2	3	4	5
Length of Spring (cm)	3	5	7	9	11	17
Extension (cm)	0	2	4	6	8	14

Plot a force/extension graph for the data shown above. Remember to include a line of best fit.

Mark the limit of proportionality on your graph.
State the equation that links force, spring constant and extension.

Let the mass of a car be 1500 kg . One car is travelling at a speed of $20 \mathrm{~m} / \mathrm{s}$ and a second car is travelling at $15 \mathrm{~m} / \mathrm{s}$. Calculate the forces exerted if they were to hit an object.
\square

Describe an experiment to determine whether your g reaction time is faster with your right or left hand.
\square
\qquad
\qquad
\square
\qquad
\qquad
\qquad
Describe the effect of friction on a moving object.

State two ways in which friction on a moving object can be overcome.
\qquad

What is terminal velocity?

Explain the term conservation of momentum.

State the equation and the units used to calculate momentum.

A car has a mass of 1500 kg and a momentum of $7500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. Calculate its velocity.
\square

State the equation that links force, mass and acceleration.

Rearrange the equation you have given above to calculate acceleration.

Calculate the force acting on an object with a mass of 15 kg and acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the mass of an object, if it has a force of 2000 N and its acceleration is $50 \mathrm{~m} / \mathrm{s}^{2}$.
\square

When an object moves in a circular motion, explain what happens to its direction and velocity if its speed remains constant.

Explain the difference between a vector and a scalar quantity. A vector quantity has a magnitude and a direction whereas a scalar quantity only has a magnitude.

Place a tick in the correct column to show whether the following are vector or scalar quantities.

Quantity	Vector	Scalar
Force	\checkmark	
Speed		\checkmark
Distance		\checkmark
Velocity	\checkmark	
Displacement	\checkmark	

Forces can be contact or non-contact. Provide two examples for each one.

Contact:

friction, air resistance, tension, normal

Non-contact:
magnetic, gravitational, electrostatic

Explain the difference between mass and weight
Mass: the amount of matter in an object.
Weight: the force acting on an object due to gravity.

Unit of mass: kilograms (kg)
Unit of weight: newtons (\mathbf{N})

Name the apparatus used to determine an objects weight newton meter

State the equation that can be used to determine the weight of an object.
weight $=$ mass \times gravitational field strength
Calculate the weight of an object on the moon if its mass is 3 kg . The gravitational field strength on the moon is $1.6 \mathrm{~N} / \mathrm{kg}$.
weight $=3 \times 1.6$

$$
=4.8 \mathrm{~N}
$$

Explain the effect on an object's weight if its mass was doubled.
The weight would also be doubled.

Calculate the resultant forces acting on the van below.

Horizontal force: 800-600=200N
Vertical force: 1000-1000 = ON
On a force diagram, what two things do the arrows show? Direction of force and relative size.

Complete the sentences below.

Elastic deformation occurs when a force has been applied to a spring and it returns to its original shape. Inelastic deformation occurs when the spring does not return to its original shape.

Students placed masses, one at a time, on a spring and measured its extension. They collected the following results.

Force (N)	0	1	2	3	4	5
Length of Spring (cm)	3	5	7	9	11	17
Extension (cm)	0	2	4	6	8	14

Plot a force/extension graph for the data shown above. Remember to include a line of best fit.

Mark the limit of proportionality on your graph.
State the equation that links force, spring constant and extension.
force $=$ spring constant \times extension

Define work done. This occurs when a force moves an object for a distance.

State the equation that links work done, force and distance.
work done $=$ force \times distance
Write the units for...
work done: joules (J)
force: newtons (N)
distance: metres (m)
A lorry travels 200 m when the brakes are applied with a force of 600 N . Calculate the work done to stop the lorry
work done $=$ force \times distance
$=600 \times 200$
$=120000 \mathrm{~J}$

Calculate the force if 3000 J of energy is required to move a box of books a distance of 150 cm .
Convert cm to $\mathrm{m}: 150 \mathrm{~cm}=1.5 \mathrm{~m}$
Rearrange formula:
force $=$ work done \div distance
$=3000 \div 1.5$
$=2000 \mathrm{~N}$

Draw lines to match the methods of transportation b with their average speeds

State three factors that could affect a person's walking speed.

1. age
2. fitness
3. terrain

The graph below

is a distance/ time graph of a person travelling from home to the supermarket and home again.

Where on the graph is the person stationary? B-C and D-E

Between points A and E, where is the speed the fastest? Explain you answer
C-D because it is the steepest part of the graph.

A car increases its velocity from $5 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$ in a time of 10 seconds. Calculate its acceleration. Remember to include all units.
acceleration $=$ change in velocity \div time
$=(12-5) \div 10$
$=7 \div 10$
$=0.7 \mathrm{~m} / \mathrm{s}$

Explain the term deceleration.
 Negative acceleration, when something is slowing

 down.A coach travels at an average speed of 30mph for 20 minutes. How far has it travelled in that time? 10 miles

Stopping distance is calculated by adding thinking distance and braking distance.
Thinking distance is affected by:
speed;
reaction time.

Braking distance is affected by:
tyres;
road conditions.

Let the mass of a car be 1500 kg . One car is travelling at a speed of $20 \mathrm{~m} / \mathrm{s}$ and a second car is travelling at $15 \mathrm{~m} / \mathrm{s}$. Calculate the forces exerted if they were to hit an object.
force $=$ mass \times acceleration
20×1500
15×1500
30 000N 22500 N

Describe an experiment to determine whether your

 reaction time is faster with your right or left hand. Work with a partnerPerson A places their forearm on the table so that their right hand is hanging over the edge of the table.
Person B places a ruler vertically between Person A's thumb and first finger, with the 0 cm end of the ruler pointing downwards. The thumb and first finger should be as far apart as possible.
Person B should place the Ocm mark level with the top of Person A's thumb and drop the ruler without telling them.
Person A catches the ruler as quickly as possible.
Reading from the top of the thumb, record how many cms it took to catch.
Repeat 9 more times with the right hand.
Repeat experiment with the left hand.

Describe the effect of friction on a moving object.

It slows it down.
State two ways in which friction on a moving object can be overcome.
Using a lubricant
Make the object more streamlined.
Smoother surfaces.

What is terminal velocity?

When the resultant force on an object is zero, so the object falls at a steady speed.

Explain the term conservation of momentum. In a closed system, the total momentum before an event is equal to the total momentum after the event
State the equation and the units used to calculate momentum.
momentum ($\mathrm{kg} \mathrm{m} / \mathrm{s}$) $=$ mass $(\mathrm{kg}) \times$ velocity $(\mathrm{m} / \mathrm{s})$ A car has a mass of 1500 kg and a momentum of $7500 \mathrm{kgm} / \mathrm{s}$. Calculate its velocity.
Rearrange formula:
$7500 \div 1500=5 \mathrm{~m} / \mathrm{s}$

State the equation that links force, mass and acceleration.
force $=$ mass \times acceleration
Rearrange the equation you have given above to calculate acceleration.
acceleration $=$ force \div mass
Calculate the force acting on an object with a mass of 15 kg and acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}$
15×4
60N

Calculate the mass of an object, if it has a force of 2000 N and its acceleration is $50 \mathrm{~m} / \mathrm{s}^{2}$.
mass $=$ force \div acceleration

$=2000 \div 50$

$=40 \mathrm{~kg}$

When an object moves in a circular motion, explain what happens to its direction and velocity if its speed remains constant.

Its direction and velocity will be continual

 changing.

