B2 Knowledge Organiser - 4.2.2 - Organisation

The sand

Enzymes

- Amylase Breaks down carbohydrate to starch
- Lipase Breaks down lipids to glycerol and fatty acids
- Proteases Break down protein to amino acids
- Bile Made in the liver.
 Emulsifies fats to provide larger surface area for enzyme action

Enzyme action

Active site – Where substrate binds.

Complimentary shape

When denatured bonds holding active site break - changes shape

Substrate can longer Enzyme

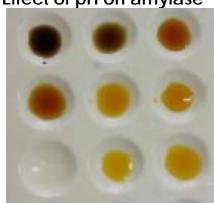
bind

(Lock and key model)

. . . .

Substrate

Food tests – RP


Substrate and enzyme

fitting together like a

"lock and key"

- Test for sugars Benedict's solution – Blue → orange/red
- Test for protein –
 Biuret Blue → purple
- Test for starch –
 lodine Yellow →
 blue/black

Required practical – Effect of pH on amylase

Step 1) Place 2 drops of iodine in each dimple within the spotting tile.

Step 2) Select a starch solution to test, and add three drops of amylase to the starch solution. Whilst doing this, start a stop watch.

Step 3) Using a new pipette, collect one drop of starch and amylase solution every 30 seconds and place it in one of the dripping trays.

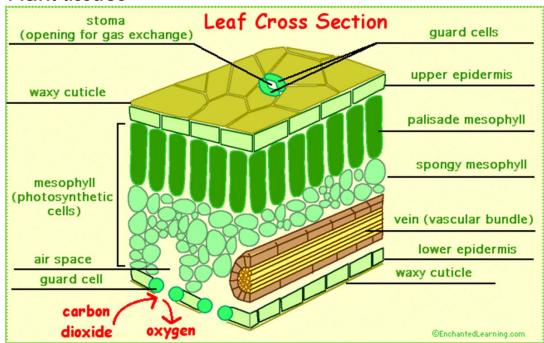
Step 4) Does the solution turn black or not? If the iodine turns black then amylase hasn't completely broken up the starch, if the iodine stays the same colour then the amylase has completed its reaction.

Health issues - risk factors

- Diet
- Smoking
- Lack of exercise
- Obesity
- Alcohol
- Carcinogens cause cancer
- Cancer changes in cells that cause uncontrollable growth and division

Coronary Heart Disease

- Build of fatty material in artery leads to **narrowing**
- Reduces blood flow to heart
- Lack of oxygen for heart muscles to respire
- Treatment -
- Statins lower cholesterol
- Stents keep artery open


The hea	art	1			Aorta	7
		ulmonary rtery ———	lik.	2.3	4	
		1		A SA		
y.				470		
	llocked artery		150	~~\		
					\	
	Ven	2 a Cava		U/	\	
	ven	a Cava			Pulmona 3 vein	ary

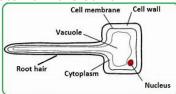
			<u>_</u>
Blood vessel	Artery	Vein	Capillary
Direction of blood flow	Away from heart	To the heart	
Lumen size	Small lumen	Large lumen	Very small
Muscle thickness	Thick layer of muscle – high pressure	Thin layer of muscle – low pressure	No muscle layer
Outer wall	Thick outer wall	Thin outer wall	Single layer of cells

B2 Knowledge Organiser – 4.2.3 – Plant tissues and systems

Plant tissues

- <u>Xylem</u> transports water and minerals up the plant stem strengthened by lignin
- <u>Phloem</u> transports sugars (sucrose) produced by photosynthesis around the plant for growth
- Meristem tissue Found at root and shoot tips for growth

- <u>Epidermal tissue</u> Waxy cuticle prevents water loss
- Palisade mesophyll –
 Adapted to absorb light
 lots of chloroplasts
 containing chlorophyll,
 cells packed tightly
 together
- Spongy mesophyll Cells packed loosely for efficient gas exchange, cells covered in thin layer of water for gases to dissolve in and they move into and out of cells


Root hair cells

Large surface area - absorb more water via osmosis

Thin cell wall - short diffusion pathway

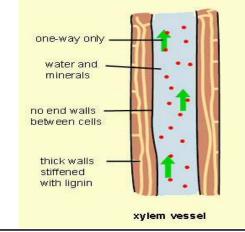
No chloroplasts Mineral uptake via active

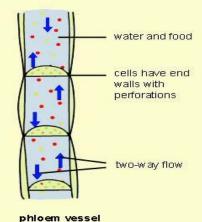
transport

SA:Vol ratio

 Larger organisms have a smaller SA:Vol ratio

 Requires a transportation system


Transpiration


- Water diffuses out of the leaf via the stomata
- Water is drawn from the xylem to replace this water, this is the Transpiration stream
- Xylem are hollow tubes strengthened by lignin
- Rate decreased by humidity
- Rate increased by temperature, air movement and light intensity

Translocation

- Glucose produced from photosynthesis is converted to sucrose
- Transported in phloem vessels
- Transported to leafs and roots for growth
- Sucrose moves through elongated cells through holes in the end walls

Structure of xylem, phloem and stomata

6