ð

Unit

J

J

J

J

J

J

Kg

m/s

N/m

m

m

N/kg

Ν

J/kg°C

°C

W

S

P1 Knowledge Organiser – 4.1.1 – Energy								
Gravitational Energy pathways	Kinetic Energy Kinetic energy stores describe	the energy that an	Quantity	Symbol				
potential • Internal thermal	object has because it is moving. It is calculated using the formula: Kinetic Energy = 0.5 x mass x (speed) ²		Kinetic Energy	E _k				
Magnetic • Radiation Internal thermal • Electrostatic			Elastic Potential Energy	E _e				
Kinetic Electrostatic	Elastic Potential Energy Elastic potential energy stores describe the energy that is stored in a spring when you squash or stretch it. Elastic Potential Energy = 0.5 x spring constant x (extension) ² Assuming the limit of proportionality has not been exceeded.	describe the energy you squash or stretch 5 x spring constant x 2	Gravitational Poten Energy	tial E _p				
As one store empties,			Change in Therma Energy	al d e				
another store is filled by the same amount		Energy Transferre	d E					
Conservation of energy Energy usually wasted as thermal energy	Gravitational Potential Energy Gravitational potential energy stores describe the energy that is stored in an object because of its position above the ground		Work Done	W				
			Mass	m				
			Speed	v				
gy Transfers in a System	<pre>g.p.e = Mass x Gravitational Field Strength x Height Objects with mass have weight due to gravitational field strength. Weight = Mass x Gravitational Field Strength This means that: g.p.e = Weight x Height</pre>		Spring Constant	k				
sefully, stored or dissipated,			Extension	е				
estroyed			Height	h				
issipation is reduced by brication or Insulation			Gravitational Field Strength					
ffected by the thickness and	Change in Thermal Energy Thermal energy stores describe the energy a substance has because of its temperature Change in Thermal Energy = Mass x Specific Heat Capacity x Temperature Change The specific heat capacity of a substance is the amount of energy required to raise the temperature of 1kg of the substance by 1°C.		Weight	w				
alls			Specific Heat Capac	ity c				
er er is the rate at which energy is transferred			Temperature Chan	ge 🛆 Ə				
e rate at which work is done			Power	Р				
Power = Energy Transferred / Time Power = Work Done / Time			Time	t				
ency measure of useful energy output of a system	Energy source	Renewable	Non-re	newable				
ency = useful output energy / total input	Advantages							

Disadvantages

Conservatio • energy

Energy Stores

•

٠

.

•

٠

.

•

٠

.

Energy usua ٠ as thermal e

Energy Transfers

- Energy can be • usefully, stored but cannot be destroyed
- **Dissipation is r** . lubrication or
- Rate of coolin • affected by th thermal condu walls

Power

Power is the rate or the rate at whi

Efficiency

Is a measure of u Efficiency = use energy Efficiency = useful power output / total power input

P1 Knowledge Organiser – 4.1.1 – Energy

Renewable Energy: Resources that are replenished at the same rate as they are used.

Non Renewable Energy: Resources that are replenished slower than the rate as which they are used.

Energy Resource	Description	Renewable/ Non Renewable	Way Used	Reliability	Environmental Impact
Fossil Fuel	Coal, oil and natural gas that are extracted from the Earth and burned.	Non-Renewable	Transport, electricity generation and heating.	Reliable	Produce greenhouse gases.
Nuclear Fuel	Energy from atoms. Uranium is a nuclear fuel and transfers energy when the nucleus splits in two.	Non-Renewable	Electricity generation.	Reliable	No greenhouse gases, but radioactive waste is made.
Biofuel	A fuel taken from living or recently living things. An example of a biofuel is animal waste.	Renewable	Transport, electricity generation and heating.	Reliable	lt is carbon neutral.
Wind	The force of wind turns blades and a generator at the top of a narrow tower.	Renewable	Electricity generation.	Unreliable as when there is no wind they don't work.	Unsightly and make a noise. Don't produce greenhouse gases.
Hydroelectricity	Can be generated when rainwater collects behind a reservoir and flows downhill. This turns a turbine.	Renewable	Electricity generation.	Affected by droughts if the reservoirs dry up.	Large reservoirs of water needed and habitats can be flooded to do this. Don't produce greenhouse gases.
Geothermal	Water is pumped under the Earth and turns to steam. This turns a turbine to turn a generator.	Renewable	Electricity generation and heating.	Reliable	Doesn't produce greenhouse gases.
Tidal	Water is trapped from high tide behind a barrage and then released into the sea through turbines.	Renewable	Electricity generation.	Reliable	Affect river estuaries and the habitats of animals. Don't produce greenhouse gases.
Solar	Transfers energy from the Sun using solar panels. They can be used to generate electricity or heat water.	Renewable	Electricity generation and heating.	No energy produced at night and affected by windy weather.	Cover large areas to generate enough power. Don't produce greenhouse gases.
Water Waves	The waves make a floating generator move up and down to generate electricity.	Renewable	Electricity generation.	Affected by storms and don't make a constant supply of electricity.	Can spoil the coastline and affect habitats. Don't produce greenhouse gases.